Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Taeyoon Lee

Taeyoon Lee

Yonsei University, Republic of Korea

Title: Development of highly stretchable conductive fiber and fiber-based electronic sensors for textile electronics

Biography

Biography: Taeyoon Lee

Abstract

Recent studies on electronic textile (E-textile) where various electronic elements are fabricated into fabrics have attracted considerable attention for the advanced wearable and flexible devices. Especially, textile-based pressure sensor have been widely explored for a lot of applications such as detecting vital signals of patients, diagnostic and motion detection by embedding them in clothes. For the realization of the highly sensitive textile-based pressure sensors, various types of pressure sensors such as capacitive, piezoelectric, piezoresistive and optical types have been investigated. Among these various types of sensors, capacitive pressure sensors have advantages in terms of simple design and analysis of the devices, high sensitivity, excellent stability and low power consumption. However, since fabrication of the sensors with high performances is difficult due to limitations of techniques and materials, it is very challenging to apply these capacitive fabric pressure sensors to advanced wearable devices. Here, we describe high-performance fiber-based pressure sensor, strain sensor, and multimodal sensor. For the development of the fiber-based sensors, a highly stretchable conductive fiber, which effectively overcomes the limitations of previous stretchable conductive fibers, was fabricated by combining metal nanoparticles and bio-inspired elastomeric fibers. The conductive fiber exhibits an excellent conductivity of 20.940 S/cm, superb stretchability of 450%, and high stability over 10,000 cycles. By using the conductive fiber, various fiber-based mechanical sensors such as a pressure sensor, strain sensor, and multimodal sensors were successfully fabricated. The fiber-based sensors have an unprecedented performance and can be easily integrated into fabrics, gloves, and clothes using a simple sewing method.