Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Seyed Babak Mahjour

Seyed Babak Mahjour

Stevens Institute of Technology, USA

Title: Enhancement of 3D electrospun polycaprolactone/collagen constructs to facilitate the integration of nanofiber/cell mats in skin graft

Biography

Biography: Seyed Babak Mahjour

Abstract

Layer-by-layer electrospinning with the capability of producing fibers in the range of nanometers represents an optimistic method to produce versatile nanofibrous matrices to recapture the key characteristics of extracellular matrix of native tissues. In recognition of the limited cell infiltration into such electrospun nanofiber matrices, it becomes highly desirable to generate large interstitial space. In this regard, the aim of this study was to differentially modulate the spatial organization of nanofibers within the mats to achieve large interfiber distances for their efficiency in forming the integrated 3D skin-like constructs. Polycaprolactone (PCL)/collagen nanofibers were collected onto various grounded conductive surfaces to obtain the nanofiber mats composed of random, aligned and meshed fibers. The fiber diameter, morphology, and pore size were characterized by Micromasterâ„¢ inverted digital microscopes and scanning electron microscopy (SEM). Rat fibroblasts or keratinocytes were seeded onto various electrospun fiber mats. Totally, 15 layers of cell-seeded nanofiber mats were assembled either with only fibroblasts or with mixture of both cells. Various tests performed including tensile test, histological analysis, methylene blue and immunofluorescence staining. Nanofiber mats with the spinning time range of 10 to 40 seconds were used. Result for spinning within the range of 20 and 25 seconds showed more reasonable mechanical strength. Due to the presence of large pore size, cell infiltration through the nanofiber mats was significantly improved and led to a better integration between layers. The meshed nanofiber mats show their advantages in promoting cell infiltration for better formation of 3D tissues.

Speaker Presentations